

# A Comprehensive and Flexible Approach to

# AN(C)OVA at the Group Level











# Gang Chen, Ziad Saad, Robert Cox

Scientific and Statistical Computing Core NIMH & NINDS / NIH / DHHS / Bethesda MD USA Contact: gangchen@mail.nih.gov http://afni.nimh.nih.gov





# Demo Example: 2 × 3 Mixed ANCOVA

### 

- o Factor A (Group): 2 levels (patient and control)
- o Factor B (Condition): 3 levels (pos, neg, neu)
- o Factor S (Subject): 15 ASD children and 15 healthy controls
- Covariate: Age

#### Piecemeal t-tests

- o Group comparison + age effect
- o Pairwise comparisons among three conditions
- Effects that cannot be analyzed
  - Main effect of Condition
  - o Interaction between Group and Condition
- Age effect across three conditions

# ANOVA through sums of squares

o Age cannot be modeled

$$\begin{split} F_{(a-1,a(n-1))}(A) &= \frac{MSA}{MSS(A)}, \\ F_{(b-1,a(b-1)(n-1))}(B) &= \frac{MSB}{MSE}, \\ F_{((a-1)(b-1),a(b-1)(n-1))}(AB) &= \frac{MSAB}{MSE} \end{split}$$

$$\begin{split} MSA &= \frac{SSA}{a-1} = \frac{1}{a-1}(\frac{1}{bn}\sum_{j=1}^{a}Y_{.j}^{2} - \frac{1}{abn}Y_{...}^{2}), \\ MSB &= \frac{SSB}{b-1} = \frac{1}{b-1}(\frac{1}{an}\sum_{k=1}^{b}Y_{..k}^{2} - \frac{1}{abn}Y_{...}^{2}), \\ MSAB &= \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)}(\frac{1}{n}\sum_{j=1}^{a}\sum_{k=1}^{b}Y_{.jk} - \frac{1}{bn}\sum_{j=1}^{a}Y_{.j.}^{2} - \frac{1}{an}\sum_{k=1}^{b}Y_{...k}^{2} + \frac{1}{abn}Y_{...}^{2}), \\ MSS(A) &= \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)}(\frac{1}{b}\sum_{i=1}^{n}\sum_{j=1}^{a}Y_{ij}^{2} - \frac{1}{bn}\sum_{j=1}^{a}Y_{.j.}^{2}), \\ MSE &= \frac{1}{a(b-1)(n-1)}(\sum_{i=1}^{n}\sum_{k=1}^{a}\sum_{i=1}^{b}Y_{ijk}^{2} - \frac{1}{n}\sum_{i=1}^{a}\sum_{k=1}^{b}Y_{.jk} - \frac{1}{b}\sum_{i=1}^{n}\sum_{k=1}^{a}Y_{ij}^{2} + \frac{1}{bn}\sum_{i=1}^{a}Y_{.j.}^{2} + \frac{1}{abn}Y_{...}^{2}) \end{split}$$

# 

| Subj |              |    | $X_0$ | $X_1$ | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $X_6$ | $X_7$ | $X_8$ | $X_9$ |                      |                               |  |
|------|--------------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------|-------------------------------|--|
| 1    | $\beta_{11}$ | ١. | ( 1   | 1     | 1     | 0     | 1     | 0     | 1     | 0     | 0     | 0 '   | \                    | $\langle \delta_{11} \rangle$ |  |
| 1    | $\beta_{12}$ | 1  | 1     | 1     | 0     | 1     | 0     | 1     | 1     | 0     | 0     | 0     |                      | $\delta_{12}$                 |  |
| 1    | $\beta_{13}$ |    | 1     | 1     | -1    | -1    | -1    | -1    | 1     | 0     | 0     | 0     |                      | $\delta_{13}$                 |  |
| 2    | $\beta_{21}$ |    | 1     | 1     | 1     | 0     | 1     | 0     | 0     | 1     | 0     | 0     |                      | $\delta_{21}$                 |  |
| 2    | $\beta_{22}$ |    | 1     | 1     | 0     | 1     | 0     | 1     | 0     | 1     | 0     | 0     | $/\alpha_0$          | $\delta_{22}$                 |  |
| 2    | $\beta_{23}$ |    | 1     | 1     | -1    | -1    | -1    | -1    | 0     | 1     | 0     | 0     | $\alpha_1$           | $\delta_{23}$                 |  |
| 3    | $\beta_{31}$ |    | 1     | 1     | 1     | 0     | 1     | 0     | -1    | -1    | 0     | 0     | $\alpha_2$           | $\delta_{31}$                 |  |
| 3    | $\beta_{32}$ |    | 1     | 1     | 0     | 1     | 0     | 1     | -1    | -1    | 0     | 0     | $\alpha_3$           | $\delta_{32}$                 |  |
| 3    | $\beta_{33}$ | _  | 1     | 1     | -1    | -1    | -1    | -1    | -1    | -1    | 0     | 0     | $\alpha_4$ +         | $\delta_{33}$                 |  |
| 4    | $\beta_{41}$ | _  | 1     | -1    | 1     | 0     | -1    | 0     | 0     | 0     | 1     | 0     | $\alpha_5$           | $\delta_{41}$                 |  |
| 4    | $\beta_{42}$ |    | 1     | -1    | 0     | 1     | 0     | -1    | 0     | 0     | 1     | 0     | $\alpha_6$           | $\delta_{42}$                 |  |
| 4    | $\beta_{43}$ |    | 1     | -1    | -1    | -1    | 1     | 1     | 0     | 0     | 1     | 0     | $\alpha_7$           | $\delta_{43}$                 |  |
| 5    | $\beta_{51}$ |    | 1     | -1    | 1     | 0     | -1    | 0     | 0     | 0     | 0     | 1     | $\alpha_8$           | $\delta_{51}$                 |  |
| 5    | $\beta_{52}$ |    | 1     | -1    | 0     | 1     | 0     | -1    | 0     | 0     | 0     | 1     | $\setminus \alpha_9$ | $\delta_{52}$                 |  |
| 5    | $\beta_{53}$ |    | 1     | -1    | -1    | -1    | 1     | 1     | 0     | 0     | 0     | 1     |                      | $\delta_{53}$                 |  |
| 6    | $\beta_{61}$ |    | 1     | -1    | 1     | 0     | -1    | 0     | 0     | 0     | -1    | -1    |                      | $\delta_{61}$                 |  |
| 6    | $\beta_{62}$ |    | 1     | -1    | 0     | 1     | 0     | -1    | 0     | 0     | -1    | -1    |                      | $\delta_{62}$                 |  |
| 6    | $\beta_{63}$ | '  | 1     | -1    | -1    | -1    | 1     | 1     | 0     | 0     | -1    | -1    | /                    | $\left(\delta_{63}\right)$    |  |
|      |              |    |       |       |       |       |       |       |       |       |       |       |                      |                               |  |

- o Challenging to properly code columns and specify weights for effect testing
- Tedious formulations of statistics (common mistakes in implementations!)
- Difficulty to generalize to handle any number of variables
- Covariates cannot be modeled in the presence of within-subject factors
- No way to correct for sphericity violation or unrealistic assumption (same variance-covariance structure)

# ♦ Multivariate linear model (MVM)

- Within-subject levels coded as columns
- Each subject associated with one row, but not coded as a column in model matrix

| Subj Pos Neg Neu Int Grp Age                                                                                                                                                                | Pos                                                                                                    | Neg Neu                                                 | Subj |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| $\frac{1}{2}$ $\begin{pmatrix} \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{11} & \beta_{12} & \beta_{13} \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & -6 \\ 1 & 1 & 10 \end{pmatrix}$ Pos Neg | q Neu $\int_{\varsigma}^{\delta_{11}}$                                                                 | $\delta_{12}$ $\delta_{13}$                             | 1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                       | 021                                                                                                    | $\delta_{22} = \delta_{23} = \delta_{32} = \delta_{33}$ | 2 3  |
| 4 $\beta_{41}$ $\beta_{42}$ $\beta_{43}$ $=$ 1 $-1$ $-4$ $\alpha_{11}$ $\alpha_{12}$                                                                                                        | $\alpha_{13}$ $\delta_{41}$                                                                            | $\delta_{42}$ $\delta_{43}$                             | 4    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                        | $\begin{pmatrix} \alpha_{23} \end{pmatrix}$ $\begin{pmatrix} \delta_{51} \\ \delta_{61} \end{pmatrix}$ | $\delta_{52}$ $\delta_{53}$ $\delta_{62}$ $\delta_{63}$ | 5 6  |

# Implementation in AFNI: 3dMVM

- o Program written in R [1] with package afex [2] for MVM
- o Post-hoc tests performed through symbolic coding with labels in R package phia [3]
- o Currently implemented as shell scripting with parallel computing capability through package snow [4]

|       |             |              |            |             | Turidado typo                |
|-------|-------------|--------------|------------|-------------|------------------------------|
| 3dMVM | -prefix     | OutputFile   | -jobs 8    | -SC         |                              |
|       | -bsVars     | 'Grp*Age'    | -wsVars    | 'Cond'      | -qVars 'Age'                 |
|       | -num_git 4  |              |            |             |                              |
|       | -gltLabel 1 | Pat_Pos      | -gltCode 1 |             | 'Grp: 1*Pat Cond: 1*Pos'     |
|       | -gltLabel 2 | Ctl_Pos-Neg  | -gltCode 2 | 'Grp        | : 1*Ctl Cond : 1*Pos -1*Neg' |
|       | -gltLabel 3 | GrpD_Pos-Neg | -gltCode 3 | 'Grp: 1*Ctl | -1*Pat Cond: 1*Pos -1*Neg'   |
|       | -gltLabel 4 | Pat_Age      | -gltCode 4 |             | 'Grp : 1*Pat Age :'          |
|       | -dataTabel  |              |            |             | *                            |
| Subj  | Grp         | Age          | Cond       | InputFile   |                              |
| S1    | Ctl         | 23           | Pos        | S1_Pos.nii  |                              |
| S1    | Ctl         | 23           | Neg        | S1_Neg.nii  | Post hoc tests               |
| S1    | Ctl         | 23           | Neu        | S1_Neu.nii  | _                            |
|       |             |              |            |             |                              |
| S50   | Pat         | 19           | Pos        | S50_Pos.nii |                              |
| S50   | Pat         | 19           | Neg        | S50_Neg.nii | Data layout                  |
| S50   | Pat         | 19           | Neu        | S50_Neu.nii | Data layout                  |

### **Advantages of MVM**

# 

- Easy formulation of testing statistics
- No limit on the number of explanatory variables
- Covariates modeled even in the presence of within-subject factors
- Voxel-wise covariate (e.g., SFNR) allowed
- Voxel-wise sphericity correction for univariate testing (UVT)
- o Within-subject multivariate testing (MVT) as complementary testing
- o MVT: HDR modeled with multiple basis functions

#### The user only provides information

- o Explanatory variable type: between- or within-subject
- o Centering options for quantitative covariates o Post hoc tests through symbolic coding
- Data table listing variables and input files
- The user does not need to be involved in specifying
- Dummy coding
- o Regressors,
- o Design matrix
- o Post hoc tests through regressors

# **Paper**

PChen et al., Applications of Multivariate Modeling to Neuroimaging Group Analysis: A Comprehensive Alternative to Univariate General Linear Model, Neurolmage (In Press): 10.1016/j.neuroimage.2014.06.027

# **Acknowledgements**

The research was supported by the NIMH & NINDS Intramural Research Programs of the NIH.

## References

- [1] R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
- [2] Henrik Singmann (2013). afex: Analysis of Factorial Experiments. R package version 0.4-57.
- http://CRAN.R-project.org/package=afex
  [3] Helios De Rosario-Martinez (2012). phia: Post-Hoc Interaction Analysis. R package version 0.1-0.
- [4] Luke Tierney, A. J. Rossini, Na Li and H. Sevcikova (2013). Snow: Simple Network of Workstations. R package version 0.3-12. http://CRAN.R-project.org/package=snow